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Abstract

A novel approach for accurate and efficient modeling of
MMIC components by using electromagnetically-trained
Artificial Neural Network (EM-ANN) software modules is
presented. The approach has been verified by developing
models for microstrip via and stripline-to-stripline interconnects
in multilayer circuits. Implementation of the approach is
demonstrated by integrating the EM-ANN models in a
commercial microwave circuit simulator.

I. INTRODUCTION

Efforts to lower the cost and reduce the weight/volume
of MMICs have resulted in high-density and multilayer circuits
where a large number of via interconnects are used. With this
increased complexity and higher operating frequencies, an
accurate and efficient characterization of via interconnect
discontinuities must be carried out in order to achieve accurate
simulation results [1]. Several recent efforts have focused on
the analytical and numerical evaluation of via discontinuities
using quasi-static and full wave techniques [1-8]. Quasi-static
models are valid only at low frequencies. Full-wave
characterization can lead to accurate results, but at a much higher
computational expense which prevents their use in practical
interactive CAD.

This paper presents a new methodology for accurate
modeling of via interconnects using Electromagnetically-Trained
Artificial Neural Networks (EM-ANNs). In the past, Artificial
Neural Networks (ANNs) have been used only to a very limited
extent in the microwave engineering area. Applications reported
in literature include: automatic impedance matching [9],
microstrip circuit design [10], and microwave circuit analysis
and optimization [11]. We make use of the ANN approach for
component modeling. The proposed technique uses the Design
of Experiments (DOE) methodology to identify various
component parameter values for which electromagnetic
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simulations need to be carried out in order to capture important
input-output relationships. Use of the DOE approach allows for
a minimum number of EM simulations that need to be
performed. Simulation results are then used to train the ANN
model, using physical parameters as inputs, to provide the
correct S-parameter response over the desired frequency range.
Since ANNs have been shown to have the ability to model
highly nonlinear relationships, as well as provide excellent
interpolative capabilities [12,13], the trained model is valid for
the entire ranges of the input variables. Once the EM-ANN
model has been trained, it is easily inserted into a commercial
microwave circuit simulator. These models prove to be
extremely useful in situations where an element is used many
times with varying geometrical dimensions. An application of
this methodology for modeling broadband shunt via elements in
microstrip circuits is presented.

II. Methodology
2.1 ANN Modeling

The ANN architecture used in this work is shown in
Fig.1 and consists of an input layer, an output layer, and one
hidden layer. It is a multilayer, feed-forward ANN, utilizing the
error backpropagation learning algorithm [14]. The hidden layer
allows modeling of complex input-output relationships.
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Fig. 1 Artificial neural network architecture used for modeling.

1996 IEEE MTT-S Digest

™H
3F



The ANN learns relationships among sets of input-output
data which are characteristic of the component under
consideration. First, input vectors are presented to the input
neurons and output vectors are computed. ANN outputs are
then compared to desired outputs and errors are computed.
Error derivatives are then calculated and summed up for each
weight until all training sets have been presented to the network.
These error derivatives are then used to update the weights for
neurons in the model. Training proceeds until errors are lower
than prescribed values. Details of the training algorithm are
given in [13].

2.2 DOE Methodology

In order to train the EM-ANN models, a number of EM
simulations need to be performed. These simulation points need
to be chosen so that important input-output relationships are
presented to and learned by the EM-ANN model. Simple
models require less simulation points, while highly nonlinear
models require an increased number of simulations.

Although DOE methods had been developed for
regression analysis, they can be used to determine simulation
points which effectively cover the region of interest. When
building a model, one would like to perform as few EM
simulations as possible for achieving the desired accuracy. This
implies starting with a low-order experimental design and
sequentially building up to higher-order designs by adding
additional simulation points.

The central composite procedure for design of
experiments [14], shown in Fig. 2 for a case with two design
parameters, is used in this work to obtain the initial structures
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Fig. 2 Distribution of simulation points for a central composite
experimental design when the number of design variables
is only two (x1 and x2).
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to be simulated for EM-ANN modeling. If it is found that the
input-output relationships of the component have not been
sufficiently captured, additional simulation points are added to fit
the higher-order nonlinearities.

1. Results for Broadband GaAs Microstrip Via

Figure 3 shows the structure and some parameters of the
via under consideration. The height of the substrate, the
dielectric constant, and all loss parameters are considered
constant for this example. The width of the incoming microstrip
line, W,, the width of the via pad, Wp, and the diameter of the
via hole, D, are variable design parameters. Input variables
for the EM-ANN and their ranges are given in Table 1.

EM simulations were performed from 5 to 55 GHz in 10
GHz steps using a commercially available full-wave
electromagnetic simulator (HP-Momentum [15]). Via structures
for 15 DOE central composite points, as well as for 14 additional
training/testing points spaced midway between the previous
points, were simulated. In addition, 16 structures were
simulated for independent verification of the model after
completion of the training.
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Fig. 3 GaAs microstrip ground via geometry. Substrate
thickness = 4 mil, £=12.9, tand=0.002, o©,,=4.1¢7,
and t,, = 0.1 mil.
Input Parameter Minimum Value Maximum Value
Frequency 5 GHz 55 GHz

W/W_ 0.3 1.0

D, /W, 0.2 0.8

W/H 0.1 2.0

Table 1 Variable input parameters for GaAs microstrip ground

via modeling.
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Fig. 4 Comparison of EM-ANN model results with full-wave
analysis of a microstrip via for training data set.
(a) magnitude response with £0.003 error bounds
(b) phase response with 12 degree error bounds

Best results were obtained by using the 15 central
composite points and the 14 interior points for training the
network. This training required a total of 50 minutes time on a
486 computer. Fig. 4 and Fig. 5 show the results for the
training and verification sets, respectively. Shown are EM-
ANN results versus HP-Momentum results, which should be
linear for a perfect fit. It may be noted that the EM-ANN via
model is able to achieve accuracy comparable to EM
simulation over the entire 5-55 GHz range. Since a full-wave
analysis is used, all the dielectric, conductor, and radiation
losses , as well as all parasitic effects, are included. The
developed model may now be used in linear analysis and in
nonlinear analysis where harmonic frequency components are
generated.
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Fig. 5 Comparison of EM-ANN model and full-wave results
for GaAs microstrip via verification data set. (Note the
expanded scale compared to that in Fig. 4(a))

(a) magnitude response with £0.005 error bounds

(b) phase response with 2 degree error bounds

IV. Integration of EM-ANN Model with a Circuit
Simulator

After training, the EM-ANN models were integrated
into a microwave network simulator (HP-MDS [16]). Fig. 6
compares the new EM-ANN via model (NET1) with HP-
Momentum results and the current msvia element available in
HP-MDS. Excellent results are achieved by the EM-ANN
models when compared to HP-Momentum simulations.
Simulation times for NET1, msvia, and HP-Momentum are
shown in Table 2. Note that the new EM-ANN model does not
require a significant increase in simulation time over the
current HP-MDS model.



V. Concluding Remarks

We present a novel approach for accurate and efficient
modeling of MMIC components by using electromagnetically-
trained ANN software modules. The approach has been
verified by developing models for microstrip via and stripline-
to-stripline interconnects in multilayer circuits and integrating
these models in a commercially available microwave circuit
simulator. Other applications of the approach will be presented

at the symposium.
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Fig. 6 Comparison of Netl model, HP-Momentum, and HP-
MDS via element, msvia. GaAs via with £=12.9, Hy,p=
4 mil, tpew=0.1 mil, Opea=4.1€¢7, tand=0.002,
WyW,=0.65, D,,o/W,=0.5, and Wi/H,,,=1.05.

Model Simulation Time
HP-MDS, msvia 0.30 sec
HP-Momentum 12.48 min
Netl 0.33 sec

Table 2 Comparison of simulation times for the GaAs via
described in Fig. 6.
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